Sl ( 2 , R ) - Module Structure of the Eigenspaces of the Casimir Operator

نویسندگان

  • ESTHER GAUNA
  • JORGE VARGAS
  • Juan Tirao
چکیده

In this paper, on the space of smooth sections of a SL(2, R)-homogeneous vector bundle. over the upper half plane we study the SL(2, R) structure for the eigenspaces of the Cru;;imir operator. That is, we determine its Jordan-Holder' sequence and the sode filttation. We compute a suitable generalized principal series having as a quotient a giver} eigenspace. We also give an integral equation which characterizes the elements of a given eigenspace. Finally, we study the eigenspaces of twisted Dirac operators. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Casimir Operators on Pseudodifferential Operators of Several Variables

We study the actions of the Lie algebra nsl(2,C) of SL(2,C) and the associated Casimir operator on the space of pseudodifferential operators of n variables. We describe the effect of the Casimir operator on a pseudodifferential operator in connection with the symbol map and construct an nsl(2,C)-invariant lifting of the symbol map.

متن کامل

IDENTITIES FOR SUMS OF A q-ANALOGUE OF POLYLOGARITHM FUNCTIONS

We present several identities for sums of q-polylogarithm functions. Our motivation for these are the relations between the q-zeta function (see [3, 4, 12] and references therein), q-polylogarithm functions (see below) and the quantum group SUq(2). More precisely, the left regular representation of the quantum group SUq(2) is the coordinate ring A(SUq(2)) represented as a left Uq(sl(2))-module....

متن کامل

A Universal Dimension Formula for Complex Simple Lie Algebras

Let g be a complex simple Lie algebra. Vogel derived a universal decomposition of S2g into (possibly virtual) Casimir eigenspaces, S2g = C⊕Y2 ⊕Y ′ 2 ⊕Y ′′ 2 which turns out to be a decomposition into irreducible modules. If we let 2t denote the Casimir eigenvalue of the adjoint representation (with respect to some invariant quadratic form), these modules respectively have Casimir eigenvalues 4t...

متن کامل

The solutions to some operator equations in Hilbert $C^*$-module

In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.

متن کامل

G-positive and G-repositive solutions to some adjointable operator equations over Hilbert C^{∗}-modules

Some necessary and sufficient conditions are given for the existence of a G-positive (G-repositive) solution to adjointable operator equations $AX=C,AXA^{left( astright) }=C$ and $AXB=C$ over Hilbert $C^{ast}$-modules, respectively. Moreover, the expressions of these general G-positive (G-repositive) solutions are also derived. Some of the findings of this paper extend some known results in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012